8.1 /10.2 Arc Length

Theorem (Arc Length Formula). Let y = f(x) be a curve defined on the interval [a, b], and
suppose that f/(x) is continuous on [a, b]. The arc length L of the curve is given by:
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1. Polygonal Approximation:

e Divide the interval [a, b] into n subintervals
of equal width Az.

e For each i, let y; = f(z;) and consider the
points P; = (z;,y;) on the curve. Py

e Approximate the curve by a polygonal

path connecting these points. 0

2. Length of a Single Segment:

e The length of a segment connecting two consecutive points P;_; and P; is:
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e By the Mean Value Theorem, Ay; = f/(xf)Ax for some z} € [x;_1, z;].
e Substitute this into the segment length:
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3. Total Length of the Polygonal Path:

e Sum the lengths of all segments:
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4. Take the Limit as n — oo:

e Asn — oo, Ax — 0, and the sum becomes a definite integral:
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Example. Find the length of the arc of the semicubical parabola y? = 23 between the points (1,1)
and (4, 8).
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Theorem. If a curve has the equation x = g(y), ¢ <y < d, and ¢'(y) is continuous, then by
interchanging the roles of x and y, we obtain the following formula for its length:
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Example. Find the length of the arc of the parabola z = 3? from (0,0) to (1,1).
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Example. Set up an integral for the length of the arc of the hyperbola zy = 1 from (1,1) to (2, %)
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Theorem. If a curve C is described by the parametric equations x = f(t), vy = g(t),
a <t <, where f'(t) and ¢'(t) are continuous on [a, 8] and C is traversed exactly once as
t increases from « to (8, then the length of C is:
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Example. Find the length of the unit circle described by = = cost, y = sint, 0 < t < 27.
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Example. Find the length of one arch of the cycloid = r(0 — sin#), y = r(1 — cos ).
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e One arch of the cycloid corresponds to the parameter interval: O£05s T

e Compute the derivatives:
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e Substitute into the arc length formula:
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e Use the trigonometric identity 1 — cos§ = 2sin?(6/2):
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e Since 0 < 6 < 27, we have 0 < /2 <, and so sin(6/2) > 0.
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Definition. Suppose a curve is described by 2 = f(u), y = g(u), where f'(u) and ¢'(u) are
continuous. The arc length function s(t) gives the length of a curve from an initial point
(f(a),g(a)) to the point (f(t),g(t)) corresponding to the parameter ¢. In particular,
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Remark. If parametric equations describe the position of a moving particle, then the speed v(t)
is the derivative of the arc length function s(t). Indeed, the speed v(t) is the rate of change of
the total distance traveled along a curve with respect to time. By the Fundamental Theorem of

Calculus,
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Example. A particle’s position is given by @ = 2t + 3, y = 4t>, t > 0. Find the speed of the
particle when it is at the point (5,4).
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