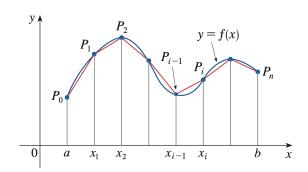
8.1 / 10.2 Arc Length

Theorem (Arc Length Formula). Let y = f(x) be a curve defined on the interval [a, b], and suppose that f'(x) is continuous on [a, b]. The arc length L of the curve is given by:

$$L = \int_{a}^{b} \int 1 + \left(\frac{dy}{dx}\right)^{2} dx$$

1. Polygonal Approximation:

- Divide the interval [a, b] into n subintervals of equal width Δx .
- For each i, let $y_i = f(x_i)$ and consider the points $P_i = (x_i, y_i)$ on the curve.
- Approximate the curve by a polygonal path connecting these points.



2. Length of a Single Segment:

• The length of a segment connecting two consecutive points P_{i-1} and P_i is:

$$|P_{i-1}P_i| = \sqrt{(x_i - x_{i-1})^2 + (y_i - y_{i-1})^2} = \sqrt{(\Delta x)^2 + (\Delta y_i)^2}$$

- By the Mean Value Theorem, $\Delta y_i = f'(x_i^*) \Delta x$ for some $x_i^* \in [x_{i-1}, x_i]$.
- Substitute this into the segment length:

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (f'(x_i^*)\Delta x)^2} = \Delta x \sqrt{1 + (f'(x_i^*)^2)^2}$$

1

3. Total Length of the Polygonal Path:

• Sum the lengths of all segments:

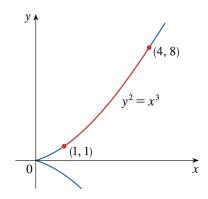
$$\sum_{i=1}^{\infty} |P_{i-1}P_i| = \sum_{i=1}^{\infty} \Delta \times \sqrt{1 + (f'(x_i^*))^2}$$

4. Take the Limit as $n \to \infty$:

• As $n \to \infty$, $\Delta x \to 0$, and the sum becomes a definite integral:

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Example. Find the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (1,1) and (4,8).



The top half of the curve is given by $y = x^{3/2}$

Compute
$$\frac{dy}{dx}$$
: $\frac{dy}{dx} = \frac{3}{2} x^{1/2}$

$$L = \int_{1}^{4} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{1}^{4} \sqrt{1 + \left(\frac{3}{2}x^{1/2}\right)^{2}} dx = \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} dx$$

Let
$$u = 1 + \frac{9}{4}x$$
. Then $du = \frac{9}{4}dx$. So $dx = \frac{4}{9}du$.

When X=1, $u=\frac{13}{4}$. When X=4, u=10.

$$= \int_{|3|_{4}}^{10} \int u \cdot \frac{4}{9} du = \frac{4}{9} \left[\frac{2}{3} u^{3/2} \right]_{|3|_{4}}^{10}$$
$$= \frac{8}{27} \left[10^{3/2} - \left(\frac{13}{4} \right)^{3/2} \right]$$

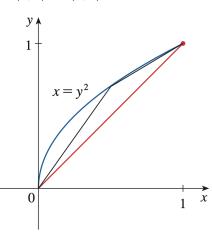
Theorem. If a curve has the equation x = g(y), $c \le y \le d$, and g'(y) is continuous, then by interchanging the roles of x and y, we obtain the following formula for its length:

$$L = \int_{c}^{d} \sqrt{1 + [g'(y)]^{2}} \, dy = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} \, dy.$$

Example. Find the length of the arc of the parabola $x = y^2$ from (0,0) to (1,1).

$$\frac{dx}{dx} = 3x$$

$$L = \int_{0}^{1} \sqrt{1 + (2y)^{2}} dy = \int_{0}^{1} \sqrt{1 + 4y^{2}} dy$$



Use the trig substitution
$$y = \frac{1}{2} \tan \theta$$

Then
$$dy = \frac{1}{2} sec^2 \theta d\theta$$
.

$$\sqrt{1+4y^2} = \sqrt{1+\tan^2\theta} = \sqrt{\sec^2\theta} = \sec\theta$$

When
$$y=0$$
, $\theta=0$. When $y=1$, $\theta=\tan^{-1}(2)$

$$L = \int_{0}^{\tan^{3}(2)} \sec^{2}\theta \, d\theta = \frac{1}{2} \int_{0}^{\tan^{3}(2)} \sec^{3}\theta \, d\theta$$

=
$$\frac{1}{2} \cdot \frac{1}{2} \left[Sec\theta tan \theta + \ln |Sec\theta + tan \theta| \right]^{\frac{1}{2}}$$

Example. Set up an integral for the length of the arc of the hyperbola xy=1 from (1,1) to $(2,\frac{1}{2})$.

The equation of the curve is
$$y = \frac{1}{x}$$

$$\frac{dy}{dx} = -\frac{1}{x^2}$$

$$L = \int_{1}^{2} \sqrt{1 + \left(-\frac{1}{\chi^{2}}\right)^{2}} d\chi = \int_{1}^{2} \sqrt{1 + \frac{1}{\chi^{\gamma}}} d\chi$$

Theorem. If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f'(t) and g'(t) are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Start with the arc length formula for the curve y = f(x)where $a \le x \le b$ and a = f(a) and $b = f(\beta)$

 $\begin{array}{c}
t = \beta \\
\times = b
\end{array}$

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

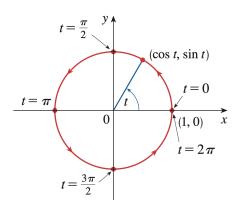
Changing variables, when x=a, $t=\alpha$. When x=b, $t=\beta$. And $dx=\frac{dx}{dt}$. dt

$$L = \int_{\alpha}^{\beta} \sqrt{\frac{dy}{dt}} \cdot \frac{dy}{dt} dt = \int_{\alpha}^{\beta} \sqrt{\frac{(dx/dt)^{2}}{(dx/dt)^{2}} + \frac{(dy/dt)^{2}}{(dx/dt)^{2}}} \cdot \frac{dx}{dt} dt$$

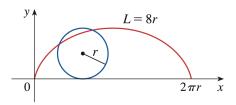
$$= \int_{\alpha}^{\beta} \sqrt{\frac{(dx/dt)^{2} + (dy/dt)^{2}}{dx/dt}} \cdot \frac{dx}{dt} dt$$

$$= \int_{\alpha}^{\beta} \sqrt{\frac{(dx/dt)^{2} + (dy/dt)^{2}}{dt}} \cdot \frac{dx}{dt} dt$$

Example. Find the length of the unit circle described by $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.



Example. Find the length of one arch of the cycloid $x = r(\theta - \sin \theta)$, $y = r(1 - \cos \theta)$.



- One arch of the cycloid corresponds to the parameter interval: $0 \le \theta \le 2\pi$
- Compute the derivatives:

$$x = r\theta - r\sin\theta$$

$$\frac{dx}{d\theta} = r - r\cos\theta = r(1-\cos\theta)$$

$$\frac{dy}{d\theta} = r\sin\theta$$

• Substitute into the arc length formula:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta = \int_{0}^{2\pi} \sqrt{r^{2}(1-(0)\theta)^{2} + r^{2}\sin^{2}\theta} d\theta$$

$$= \int_{0}^{2\pi} r\sqrt{(1-(0)\theta)^{2} + \sin^{2}\theta} d\theta = \int_{0}^{2\pi} r\sqrt{2(1-(0)\theta)} d\theta$$

$$\int_{0}^{2\pi} r\sqrt{(1-(0)\theta)^{2} + \sin^{2}\theta} d\theta = 2-2\cos\theta$$

• Use the trigonometric identity $1 - \cos \theta = 2\sin^2(\theta/2)$:

$$L = \int_0^{2\pi} r \sqrt{4 \sin^2(\frac{\theta}{2})} d\theta = \int_0^{2\pi} 2r \left| \sin(\frac{\theta}{2}) \right| d\theta$$

• Since $0 \le \theta \le 2\pi$, we have $0 \le \theta/2 \le \pi$, and so $\sin(\theta/2) \ge 0$.

$$L = 2r \int_{0}^{2\pi} \sin\left(\frac{\theta}{2}\right) d\theta = 2r \left[-2\cos\left(\frac{\theta}{2}\right)\right]_{0}^{2\pi}$$

$$= 2r \left[-2\cos\pi - (-2\cos\sigma)\right] = 2r \left[2+2\right] = 8r$$

Definition. Suppose a curve is described by x = f(u), y = g(u), where f'(u) and g'(u) are continuous. The arc length function s(t) gives the length of a curve from an initial point (f(a), g(a)) to the point (f(t), g(t)) corresponding to the parameter t. In particular,

$$S(t) = \int_{a}^{t} \sqrt{\left(\frac{dx}{du}\right)^{2} + \left(\frac{dy}{du}\right)^{2}} du$$

$$S(t) computes this length to the sength to the se$$

Remark. If parametric equations describe the position of a moving particle, then the speed v(t) is the derivative of the arc length function s(t). Indeed, the speed v(t) is the rate of change of the total distance traveled along a curve with respect to time. By the Fundamental Theorem of Calculus,

$$V(t) = S'(t) = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

Example. A particle's position is given by x = 2t + 3, $y = 4t^2$, $t \ge 0$. Find the speed of the particle when it is at the point (5,4).

$$V(t) = \sqrt{(2)^2 + (8t)^2}$$

The particle is at (5,4) when t=1

$$V(1) = \sqrt{4 + (8.1)^2} = \sqrt{68} \approx 8.25 \text{ units/time}$$